Notes on Signal-to-Noise Ratio (SNR) or 
“SNR for Non-Engineers”
Introduction 

When I started astro-imaging five years ago, I was not familiar with the engineering concepts of “signal” and “noise.”  With a typical excess of self-confidence, I thought, “you’ve got signal, you’ve got noise, one is divided by the other, how complicated could it be?”  But I soon encountered many message forum threads with wildly conflicting advice on the subject, and I quickly realized the topic wasn’t entirely straightforward.  In the process of trying to sort through all the information, I kept coming back to the advice of expert Stan Moore, who essentially said, “Look at the equation, the answers to your questions are in the equation.”  So….. I decided to buckle down and actually study the equation, and this paper is really just a summary of what I learned in that process.  I’m still not an expert in these topics, far from it; but I’ve become comfortable with how the relatively simple math can tell me what I need to know to capture better data and improve my final results. 
Baseline Concepts (or Misconceptions)

It’s easy to fall into the trap of thinking about signal as “good stuff” and noise as “bad stuff”, but that’s fundamentally wrong.  “Signal” is anything that gets counted in the way of photons, whether those are “good” photons (from our target DSO) or “bad” photons (from thermal noise in the CCD or sky background).  Further, this type of “noise” is nothing like our everyday notions – this isn’t like your neighbor rooting for the Chargers or even the funky interference pattern on a TV caused by a loose coupler.  In the latter two examples, the noise can be eliminated by taking the appropriate steps – yelling at your neighbor to shut up or finding the loose connection and fixing it.  In imaging,  noise  is really “uncertainty,” that is,  the inherent measurement error in counting arriving photons.  And whether we’re doing photometry or just making pretty pictures, we really are counting photons – CCD detectors are counting engines.   Moreover, these types of noise (uncertainty) can’t be removed, although their relative importance compared to signal can be reduced.  In fact, everything we do – calibrating with dark frames or even extending the exposure times – actually increases the noise levels, albeit at a slower rate than the increases in signal levels. 

So each of the signal levels we measure, including object signal, sky background signal, and dark current signal, has a corresponding noise level.  For relatively low signal counts, the counting rates have a Poisson distribution, which means that the associated measurement uncertainty (noise) is given by √ (Count).   Recalling Physics 100 Lab, we know these uncertainties will propagate in a well-known form as we add or subtract signal levels: 

For the quantity (A – B) or (A + B), the resultant uncertainty will be √ (σa2 + σb2)

So this will be the common form of the noise term we use in the denominator of any of our SNR calculations, and most of our analysis will involve computing what these terms are and looking at their relative magnitudes.

Object SNR – A Theoretical Limit 

Although it’s tempting to immediately dive into the innards of CCD behavior, let’s postpone that.  Instead, let’s think about what SNR will look like with a hypothetical “perfect” camera.  Specifically, think about a perfect camera that has no dark current or read noise at all.  Further, let’s forget about pixels for the moment, and just think about the “big picture” – how many photons are falling out of the sky and what can we do to count them with our “perfect” camera?  First, we need to recognize we always have two sources of photons coming at us – those from the target of interest plus those from the sky background.  What we visualize as the “target object” on an image is really the sum of these two things.  So if we measure the photon count over the target object, like a galaxy, we are really measuring the sum of Sobject + Ssky.  In fact,  Sobject  is usually much less than Ssky, but that’s ok.  But this means we are really interested in the difference between these two values, i.e. the target object isolated from the background.  So the term we want in the numerator of the SNR equation is Sobj = (Ssum - Ssky).  But with our perfect camera, what is the noise term in the denominator?  Well, it isn’t zero because we have an inherent Poisson uncertainty in counting these photons.  So that means the noise term should look like: 
Noise = √(σa2 + σb2) = √( Sobj  + Ssky)
So we now know the theoretical value of SNR for a given target using a noise-free camera: 

SNR =  Sobj  /  √( Sobj  + Ssky)
Even though this is a very over-simplified view of the world, we can still start to see some interesting characteristics of SNR.  For example, we immediately see that a darker sky produces a better SNR, all else being equal – a dark sky essentially minimizes the denominator term.  But let’s look a bit closer at the numerator, which is essentially a count of the target photons that make it down the tube of our telescope.  The total signal,  Sobj,, is really a product of the photon rate times the amount of time we collect those photons: 
Sobj   = Ś * t

Note that we are using Ś  (S-dot) to indicate the photon rate per second.  This brings the total exposure time, t, into the equation, so we need to use the same representation for the terms in the denominator: 

SNR = (Ś * t )   /  √( (Ś * t )  + (Śsky * t  )
Re-arranging terms in a trivial way, we see: 

SNR = Ś   *  √ t   /    √( Ś   + Śsky )
So SNR is always improved with longer integration times, by a factor of  √ t.  Further, we know that the total signal rate, Ś (in units of photons/sec), is proportional to the size of the collecting surface, which scales as (telescope radius)2. .  Since this term appears in both the numerator and denominator, we can rearrange again to show: 
SNR α ( R * √ t )  (where R is the telescope aperture radius)
We now see how the theoretical SNR can be maximized for any given target: 

· Find the darkest possible sky conditions

· Use the largest possible telescope

· Integrate over the longest practical timeframe 

These options are well-known to any amateur imager, but now we see how they are rooted in the math of SNR.   Further, we see how amateurs can combat practical limitations of sky condition and telescope size: just “go deeper” in terms of time!  
We can also use this theoretical SNR value as an upper bound for any analysis that includes the noise terms from a real-world imaging camera.   Just to set the baseline for what we’ll do going forward, here’s how the theoretical SNR behaves for typical values of target signal and background sky level: 
[image: image1.emf]Theoretical SNR

0.00

5.00

10.00

15.00

20.00

25.00

0 200 400 600 800 1000 1200 1400

Total Exposure Time (secs)


Real-world Cameras 

Dark Noise 
Ok, now it’s time to get a little more practical and think about using real-world cameras that also contribute noise.  We’ll consider only two primary sources of that noise, those being dark current and read noise.  Dark current arises from thermal generation of electrons in the CCD – once we start counting electrons, there is no way to distinguish between those arising from photon hits (the “good” ones) and those generated thermally (the “bad” ones).  Dark current is quite sensitive to temperature, so most astronomy cameras are operated at temperatures well below freezing in order to minimize it.  Dark current is relatively small for most such cameras, but it’s never zero and it must be taken into account for SNR calculations.  Of course there are really two things to consider here: there is a dark current signal, and there is the inherent noise (uncertainty) associated with it.  We typically subtract out most of the dark signal by using calibrated dark frames, but we can’t ever remove the noise component.   So our equations will omit the dark current signal from the numerator, assuming we are working with dark-calibrated data; but the dark noise must remain in the denominator.  
Camera data sheets typically specify the dark signal level in units of electrons/pixel/second at varying levels of temperature.   We will be interested in the noise associated with that number, which will look like √ (dark signal rate) because it has a Poisson distribution. 

Read Noise 

Read noise differs from dark noise in that it doesn’t have a “signal” associated with it.  It is primarily dependent on the design of the camera rather than the behavior of the detector, but it is still a statistical quantity associated with counting events.  But we are given this noise parameter explicitly, as an average value in units of electrons/pixel, unlike the dark noise term.  For most astronomy cameras, the read noise contributes more to the noise denominator than dark noise, and for short exposures, it can be the largest noise term of all.
It is worth mentioning that we are intentionally omitting some sources of noise in the SNR equation in the interest of clarity.  For example, both flat field and dark frame calibration add noise.  But we can get a better feel for the behavior of SNR if we leave these terms out and just focus on the major contributors discussed so far.

Behavior of the Camera Noise Terms 

The dark noise and read noise terms have different dependencies on time, pixel counts, and frame counts, so we need to keep these sorted out as we build a more realistic SNR equation.  The dark noise term scales linearly with total exposure time and with the number of pixels.  A single frame of 10 minutes should contribute the same dark signal as 5 frames of 2 minutes each (assuming a bias of 0).  Binning the detector will have no effect on dark noise because the counting events are still occurring in the individual pixel wells – you can’t escape from that.  Read noise, however, behaves differently.  Since it occurs whenever we “read” the chip, it is independent of the exposure time; but it scales linearly with the number of frames.  It is also strongly affected by binning because it is dependent on the final number of pixels that are actually “read out.”  So 2x2 binning reduces read noise on each frame by 4x, and that’s the primary reason for doing binning at all. 
At this point, we have the pieces in place to identify the noise terms that will appear in our actual SNR equation.  Going back to our “Physics 100 Lab”  representation, the denominator should look like: 

Noise = √(σobject2 + σsky2 + σdark noise2  + σread  noise2 )
Now, the first three terms here are Poisson uncertainties, so they are values we estimate via their respective signal levels.  The read noise term, however, is a directly measured (or vendor-supplied) value so we will use “R” rather than σread  noise .  This gets us to the form commonly seen for SNR equations:

Noise =  √( Sobj  + Ssky  + Sdark   + R2  )

and putting it all together:

SNR =  Sobj  /   √( Sobj  + Ssky  + Sdark   + R2  )
Where 

Sobj    is the signal from the object excluding sky background, 
Ssky    is the signal from the sky background,

Sdark    is the dark signal from the camera, and 
R    is the camera read noise. 

When we actually want to put the SNR equation to work, we’ll need to pay attention to details like time, number of pixels, and total frame counts; but we can defer that for now.  Looking at the noise equation above, it’s easy to see that read noise plays a big role because it is squared.  In order to approach the theoretical object SNR we discussed earlier, we will want to find ways to make Sdark  and R    relatively small compared to the noise terms of Sobj  and Ssky .  Without spoiling the ending to this movie, that will typically mean cooling the camera effectively and using sub-exposure times that are long enough to overwhelm the read noise.  Secondarily, we may also attack the read noise term by binning the CCD.  But those conclusions will emerge as we look at how the SNR equation behaves when we manipulate the various factors under our control.  
Flexing the SNR Equation 

Having developed the equation for SNR, we can explore how it behaves as we change various input parameters.  Of course, there are dozens of independent variables, and we need to just nail some of them down in order to see what’s going on.  We need to choose a typical camera with a set of gain, dark current, and read noise terms. Then,  we need to choose values for sky background and object signal rates.  The latter are entirely dependent on camera sensitivity, sky darkness, and the optical properties and size of the telescope.  We need to give values to these parameters in order to make any headway, but it’s important to understand there is nothing “universal” about them – your mileage will absolutely vary!  In other words, the absolute values of SNR are pretty much meaningless, and we will pay them no attention.  What’s important is how SNR behaves as we adjust one variable at a time, and those behaviors generally are “universal.”  So with that said, I chose camera parameters for the SBIG ST-2000XM and sky/target conditions from a recent session I had at a semi-rural site in Southern California using a 10-inch SCT at f/7 to image M78.  And let me say this again: the numerical results shown in all the examples below are entirely dependent on the sample data values I’ve chosen.  Only the general behaviors are important here.
Sub-Exposure Times
As discussed in the first section, it’s interesting to compare actual SNR (using a real-world camera) with the theoretical SNR of a noise-free camera.  So that’s what we’ll do for most of our exploration of SNR behavior.  Maybe the most basic question is to ask, what exposure time should we choose to image this target?  We know that “longer is probably better” up to a point, but where is that point?  This leads us to the first graphical result: 
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If we look closely at the numbers on the Y-axis, we can see that we are “gaining ground” on the ideal SNR as we increase the length of our sub-exposures – on a percentage basis.  This is easier to see if we look at the “Percentage of Ideal” instead of the raw SNR numbers – look at the upper (red) curve below: 
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So with exposure times below 3 minutes (180 secs), we reach an SNR level of less than 70% of the ideal; but if we go out as far as 15 minute subs (900 sec), we reach over 90% of the ideal value.  Keep in mind, though, this is only for a single frame, so we shouldn’t conclude that we must use these long exposure times to get useful imaging done.  The explanation for this relative improvement is right there in the lower curve on the graph, which shows the relative contribution of read noise.  As we go to longer sub-exposure times, the relative importance of read noise drops sharply, thus accounting for our relative gain in SNR.  

So, if we got this improvement in reducing the relative contribution of read noise, are we getting the same improvement with dark noise?  No!  The dark noise contribution, on a percentage basis, is constant regardless of the sub-exposure time.  As we said earlier, the only way to reduce the dark noise contribution is to cool the camera further.  On the other hand, it is usually small enough to largely ignore – it contributed less than 3% to the noise terms in these examples.  

At this point, it seems like long sub-exposures are the way to go, but there are other ways to control read noise.  And if we have less-than-first-rate gear, we will need to find those other ways.  This brings us to another question that is asked by every beginning imager:  “instead of using a long exposure time, can I just take more frames using a shorter exposure time?”   The answer is “yes, up to a point.”  Let’s imagine that we’d ideally like to image a target using 20-minute sub-exposures for an elapsed time of 4 hours, and in doing so, we would get a final object SNR of about 70 (just pick a number). But our commodity telescope mount isn’t nearly up to that task, and we’ll have to use sub-exposures much shorter than that.   Can we still get close to the same SNR value of 70 and, if so, what is the cost in total elapsed time?  The results are shown below: 
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So this is good news for us budget imagers – at the expense of an additional hour of capture time, we can achieve the same total SNR even with 5-minute (300 sec) sub-exposure times.  And with sub-exposure times of 10 minutes instead of 20, we would see virtually no difference for this particular set of sky, camera, and telescope conditions.   Under different conditions, and especially for darker background skies, we might pay a steeper price, but the general principle still holds.  Now, just to dispel the notion of “free lunches,” look at the elapsed time difference if we wanted to use 60-second sub-exposures – a whopping 10.8 hours requiring a total of 650 frames!   And why is this?  It’s because the read noise is dominant at these short sub-exposure times, so we would have to capture a very large number of images to get it under control.  
Effects of Target and Sky Background Levels 

Before leaving this subject, let’s look at how the elapsed time/sub-exposure time relationship changes if the target is fainter.  Mostly, it doesn’t.  The absolute SNR values will get smaller, but the graph shown above will stay the same.  The reason is this: we are essentially trying to minimize the contribution of read noise compared to sky background noise – the noise created by the target signal is usually very small, so making it even smaller has little effect on the result.   That prompts another question, then: how does this trade-off behavior change if we move to a darker sky location?  In that case, it will change, making it progressively more difficult to “make up the difference” with short sub-exposure times.
[image: image5.emf]Elapsed Time/Exposure Time Trade-off - Darker Sky
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With this example, where the sky background level was reduced by 30%, we can use sub-exposure times of 6 minutes (360 sec) or more and only extend our capture session by 1 hour or less.  With 5-minute sub-exposures (300 sec), the extended time penalty is 2.4 hours, and the situation quickly becomes unmanageable if we try to use even shorter exposure times.  
There is another, more important way in which sky background levels can change dramatically:  through the use of color or narrowband filters.  If the filter bandwidth is small enough, we may be forced to live with a relatively large contribution of read noise to the overall SNR calculation.   To illustrate the point, the graph below shows the relative contribution of read noise and the “percentage of ideal SNR” when my sample target was imaged through a blue filter:
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Because of the relative “darkness” of the background sky using the blue filter, the read noise contribution is much higher, starting out at over 2x the noise contributed by the background sky.  And even when the sub-exposure times are extended to 20 minutes (1200 sec), we still only reach about 80%  of the theoretical SNR value, compared to the 95% level we saw with the luminance filter.  Clearly, color and narrowband filters have a dramatic effect on the object SNR as a function of sub-exposure time, and this is one reason why color frames often have such “noisy” sky backgrounds.
Binning

In the previous section, we looked at ways in which the contribution of read noise could be minimized, principally by using longer sub-exposure times.  But we also saw that working under very dark skies or using color filters could create situations where the read noise remained comparatively high.  To combat that, we have another tool we can apply, which is on-chip binning.   With binning, a number of pixels (typically 4 or maybe 9) are combined into a “super-pixel” before being read off the chip.  In that case, we pay the penalty of read noise for each “super-pixel”, rather than for its constituent parts.  Naturally, this reduces the image scale and the angular resolution of the telescope/camera combination, but it can have a powerful effect on SNR.  Going back to the luminance data we used earlier, look at how a 2x2 binned image approaches the theoretical SNR limit more quickly than the unbinned image of the same target: 
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At lower values of sub-exposure time, the SNR benefit of binning is substantial – we see an improvement at the low end from 60% of ideal to over 80%.  But as the sub-exposure time increases, the benefit diminishes until there is practically no benefit at all.  This makes sense, of course – as we go to longer sub-exposure times, the relative importance of read noise diminishes on its own and therefore the incremental benefit of binning is less important.  Now let’s look at the same target and sky conditions when using the blue filter:  
[image: image8.emf]Effects of Binning  - Blue Filter
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As we would expect, the benefits are much more pronounced, and even at sub-exposure times of 15 minutes (900 sec), we see an improvement in relative SNR of nearly 15%.  The overall behavior is the same, of course, with diminishing benefits as we go to longer sub-exposures; but the convergence point doesn’t occur until we exceed what are likely to be practical limits on exposure times.
We should reiterate that this gain in SNR must be weighed against the loss of angular resolution in the system, but in many cases, the compromise is well worth choosing.

Conclusion

In the previous sections, we’ve looked at all kinds of SNR behaviors as they relate to sub-exposure time.  One of the terms often found in online discussions is “sky-limited exposure times,” which we haven’t mentioned.  The concept is actually quite simple – it is just the sub-exposure time that will hold the read noise contribution to a specific (low) percentage of the background sky noise, usually in the range of 5 to 9%.  As with all such calculations, it is affected by  the sky background and telescope/camera combination, so it explicitly requires a measurement of the background sky level.  The equation for computing this “sky-limited exposure time” is pretty straightforward and can be easily done on a calculator: 
Tsky-limit = R2 / ((1 – p) 2 * Ssky ) 


where 

  Tsky-limit  = Sky-limited exposure time in minutes, 

  R  = Camera read noise in units of electrons

  p  = Read noise contribution, decimal value (e.g. 0.05 – 0.10) 

  Ssky = Background sky level in units of electrons/minute

John Smith, the author of CCDAutoPilot, has discussed this topic at length and has an excellent online calculator for computing this sky-limited exposure time:  
(http://www.ccdware.com/resources/subexposure.cfm)

The signal-to-noise ratio we’ve discussed here is just one figure of merit for judging data quality, and it is often not a direct indicator of what makes a “good” final image.  And it certainly can’t be used as a quantitative measuring stick, along the lines of SNR = 3 is “just visible”, SNR = 40 is “very good,” and SNR = 100 is “great.”  In some specialized circumstances, such as photometry of point sources, these types of criteria may be useful, but they are largely useless for making pretty pictures.  That said, it is useful to think about SNR during the image capture process and to do everything practical to maximize it. 
In closing, I would like to emphasize that nothing said here is in any way new.  The equations are well-known, and others have done a thorough job of explaining them elsewhere.  I would like to thank  the following experts, whose work  has helped me to get a handle on this rather interesting topic: 

Stan Moore, author of CCDStack    http://www.stanmooreastro.com/
John Smith, author of CCDAutoPilot   http://www.hiddenloft.com/
Paul Kanevsky, author of CCDInspector   http://pk.darkhorizons.org/
Steve Cannistra  http://www.starrywonders.com/
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